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Background & motivation
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Machine learning in finance |

Adoption of ML has been rapid in the financial industry. Why?

> The data
» The algos & tools
» The infrastructure for data storage & computation

Difference today versus 3 years ago
» Many use-cases are available now

» New technology constantly being adopted

» Robo advisors, block chains, algo & systematic trading
» Many hedge funds use the Amazon S3 cloud, etc.

» Alternative data & its handling/preparation is better
understood

» A shift towards being incorporated into existing models
» Common issues: Debiasing, tagging & paneling
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Machine learning in finance Il
Buyer beware:
» Testing models: In- versus out-of-sample

» Where are your algos and data from?

» “Black box" risk on steroids

» Is your data biased?

» Are your algos correct? Do you know what they do? Did you
implement them yourself?

» Data science & ML are not cure-alls (who knew?)

What do we want in the financial indsutry?
» Financial domain expertise often critical
> More business use cases
» Interpretable ML
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Machine learning for trading |

» While the role of trading has not changed modern ML allows
us to
» Create more realistic models
» Build models that adapt to changing market conditions
» Solve the models faster
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Machine learning for trading Il

Examples of ML tools that are being leveraged for trading:

| 4

>

LASSO-based techniques yield very fast derivative free solvers
for single- and multi-period problems

Bayesian learning and Gaussian processes used for building
forecasts (forecasting distributions) and dealing with
estimation/model risk

Unsupervised learning techniques for building statistical risk
models

Regime-switching models for dealing with different market
environments (e.g. risk on/off)

Mixed-distributions to model skewed distributions and
tail-behavior

Bootstrap and cross-validation techniques for backtesting
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Machine learning for trading Il

» Reinforcement learning (often tree- or NN-based models) for
complex trading / planning problems in the presence of
uncertainty (where the value function is not easily obtainable)

» NLP, LDA & extensions, ICA for analysis of news, filings and
reports
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Replication & hedging

» Replicating and hedging an option position is fundamental in
finance

» The core idea of the seminal work by Black-Scholes-Merton
(BSM):

» In a complete and frictionless market there is a continuously
rebalanced dynamic trading strategy in the stock and riskless
security that perfectly replicates the option (Black and Scholes
(1973), Merton (1973))

» In practice continuous trading of arbitrarily small amounts of
stock is infinitely costly and the replicating portfolio is
adjusted at discrete times

» Perfect replication is impossible and an optimal hedging
strategy will depend on the desired trade-off between
replication error and trading costs
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Related work |

While a number of articles have considered hedging in discrete time
or transaction costs alone,

> Leland (1985) was first to address discrete hedging under
transaction costs

» His work was subsequently followed by others?
» The majority of these studies treat proportionate transaction
costs
» More recently, several studies have considered option pricing

and hedging subject to both permanent and temporary market
impact in the spirit of Almgren and Chriss (1999), including
Rogers and Singh (2010), Almgren and Li (2016), Bank,
Soner, and Vol (2017), and Saito and Takahashi (2017)

» Halperin (2017) applies reinforcement learning to options but
the approach is specific to the BSM model and does not
consider transaction costs
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Related work I

» Buehler et al. (2018) evaluate NN-based hedging under
coherent risk measures subject to proportional transaction
costs

!See, for example, Figlewski (1989), Boyle and Vorst (1992), Henrotte
(1993), Grannan and Swindle (1996), Toft (1996), Whalley and Wilmott
(1997), and Martellini (2000).
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What we do

In the article we:

» Show how to build a reinforcement learning (RL) system which
can learn how to optimally hedge an option (or other
derivative securities) in a fully realistic setting

> Discrete time
» Nonlinear transaction costs
» Round-lotting

> Method allows the user to “plug-in" any option pricing and
simulation library, and then train the system with no further
modifications

» The system learns how to optimally trade-off trading costs
versus hedging variance for that security

» Uses a continuous state space
» Relies on nonlinear regression techniques to the “sarsa targets”
derived from the Bellman equation

» Method extends in a straightforward way to arbitrary portfolios

of derivative securities
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Reinforcement learning for hedging
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Brief introduction to RL |

» RL agent interacts with its environment. The “environment” is
the part of the system outside of the agent's direct control

> At each time step t, the agent observes the current state of the
environment s; and chooses an action a; from the action set

» This choice influences both the transition to the next state, as
well as the reward R; the agent receives

Environment

Come ) o) (o

RL Agent
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Brief introduction to RL Il

» A policy 7 is a way of choosing an action a;, conditional on
the current state s;

» RL is the search for policies which maximize the expectation of
the cumulative reward G;

E[Gt] = E[Res+1 + YRev2 + 7 Resz + .. -]

where + is discount factor (such that the infinite sum
converges)

» Mathematically speaking, RL is a way to solve multi-period
optimal control problems

» Standard texts on RL includes Sutton and Barto (2018) and
Szepesvari (2010)
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Brief introduction to RL Il

» The action-value function expresses the value of starting in
state s, taking an arbitrary action a, and then following policy
7 thereafter

gr(s,a) = E;[G| St = s,Ar = 4] (1)

where E; denotes the expectation under the assumption that
policy 7 is followed

» If we knew the g-function corresponding to the optimal policy,
g«, we would know the optimal policy itself, namely

> We choose a in the action set that maximizes q.(s;, a)
This is called the greedy policy
» Hence the problem is reduced to finding g., or producing a
sequence of iterates that converges to g.

» Methods for producing those iterates are based on the Bellman
equations
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A visual example

YouTube example
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https://www.youtube.com/watch?v=W_gxLKSsSIE&list=PL5nBAYUyJTrM48dViibyi68urttMlUv7e&index=1

Supervised learning vs. RL?

Training signals = target output from training set

Inputs

States

l

 —

Supervised
learning

———> Outputs

Training signals = rewards

l

D ——

Reinforcement
learning

——> Actions
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RL has a feedback loop

Environment

Training signals = rewards

Reinforcement

States — learning —> Actions
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Is RL worth the trouble?

RL is often harder than supervised learning
» Joint learning and planning/optimizing from correlated samples

» The distributions of the data changes with the choice of
actions

» Need access to the environment for training

So when may it be a good idea to use RL?
» Data comes in the form of trajectories (i.e. non-IID sequences)
» We need to make a sequence of decisions (i.e. non-11D
decisions)
» \We are able to observe feedback to state or choice of actions.
This information can be partial and/or noisy
» There is a gain to be made by optimizing action choice over a

portion of the trajectory (i.e. time consistency needed for the
Bellman equation to hold)

Other ML techniques cannot easily deal with these situations
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Common challenges when solving RL problems

» Specifying the model
» Representing the state
» Choosing the set of actions
» Designing the reward

» Acquiring data for training

» Exploration / exploitation
» High cost actions
» Time-delayed reward

» Function approximation (random forests, CNNs)

» Validation / confidence measures
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Automatic hedging in theory |

» We define automatic hedging to be the practice of using
trained RL agents to handle hedging

» With no trading frictions and where continuous trading is
possible, there may be a dynamic replicating portfolio which
hedges the option position perfectly, meaning that the overall
portfolio (option minus replication) has zero variance

» With frictions and where only discrete trading is possible the
goal becomes to minimize variance and cost

» We will use this to define the reward
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Automatic hedging in theory |l

» This suggest we can seek the agent's optimal portfolio as the
solution to a mean-variance optimization problem with
risk-aversion x

max (E[wr] — gV[WT]) (2)

where the final wealth wt is the sum of individual wealth
increments dw;,

T
wr = wg + E dwy
t=1

We will let wealth increments include trading costs
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Automatic hedging in theory IlI

» In the random walk case, this leads to solving

T
K
i E[-6 —VI[é 3
permissig]elr;trategies;( [ Wt] + 2 [ Wt]) ( )
where
—5Wt = Ct

and ¢; is the total trading cost paid in period t (including
commissions, bid-offer spread cost, market impact cost, and
other sources of slippage)

» With an appropriate choice of reward function the problem of
maximizing this mean-variance problem can be recast as a RL
problem
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Automatic hedging in theory IV

» We choose the reward in each period to be?
K 2
Rt = (SWt — §(6Wt) (4)

» Thus, training reinforcement learners with this kind of reward
function amounts to training automatic hedgers who tradeoff
costs versus hedging variance

2See Ritter (2017) for a general discussion of reward functions in trading.
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Automatic hedging in practice |

>

>

Simplest possible example: A European call option with strike
price K and expiry T on a non-dividend-paying stock

We take the strike and maturity as fixed, exogenously-given
constants. For simplicity, we assume the risk-free rate is zero

The agent we train will learn to hedge this specific option with
this strike and maturity. It is not being trained to hedge any
option with any possible strike/maturity

For European options, the state must minimally contain (1)
the current price S; of the underlying, (2) the time

7:= T — t > 0 remaining to expiry, and (3) our current
position of n shares

The state is thus naturally an element of3
S:=R2 xZ=1{(S,7,n)|S>0,7>0,n€eZ}.
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Automatic hedging in practice |l

» The state does not need to contain the option Greeks, because
they are (nonlinear) functions of the variables the agent has
access to via the state

» We expect the agent to learn such nonlinear functions on their
own

> A key point: This has the advantage of not requiring any
special, model-specific calculations that may not extend
beyond BSM models

3|f the option is American, then it may be optimal to exercise early just
before an ex-dividend date. In this situation, the state must be augmented with
one additional variable: The size of the anticipated dividend:in period t =+ 1.
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Let's put RL at a disadvantage

> The RL agent is at a disadvantage: It does not know any of
the following information:

>
>

>
>
>

>

the strike price K

that the stock price process is a geometric Brownian motion
(GBM)

the volatility of the price process

the BSM formula

the payoff function (S — K), at maturity

any of the Greeks

Thus, it must infer the relevant information, insofar as it
affects the value function, by interacting with a simulated
environment
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Simulation assumptions |

>

We simulate a discrete BSM world where the stock price
process is a geometric Brownian motion (GBM) with initial
price Sp and daily lognormal volatility of o /day

We consider an initially at-the-money European call option
(struck at K = Sp) with T days to maturity

We discretize time with D periods per day, hence each
“episode” has T - D total periods

We require trades (hence also holdings) to be integer numbers
of shares

We assume that our agent's job is to hedge one contract of
this option

In the specific examples below, the parameters are
o =0.01,5y =100, T = 10, and D = 5. We set the
risk-aversion, kK = 0.1
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Simulation assumptions I

» T-costs: For a trade size of n shares we define
cost(n) = multiplier x TickSize x (|n| + 0.01n?)

where we take TickSize = 0.1. With multiplier = 1, the term
TickSize x |n| represents a cost, relative to the midpoint, of
crossing a bid-offer spread that is two ticks wide. The
quadratic term is a simplistic model for market impact

» All of the examples were trained on a single CPU, and the
longest training time allowed was one hour

» Baseline agent = RL agent trained in a friction-less world
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Example: Baseline agent (discrete & no t-costs)

200

100

= delta.hedge.shares
= = option.pnl

= stock.pnl

== stock.pos.shares

« = total.pnl

value (dollars or shares)

-200

0 10 20 30 40 50
timestep (D*T)

Figure 1: Stock & options P&L roughly cancel to give the (relatively low
variance) total P&L. The agent’s position tracks the delta
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Example: Baseline agent (discrete & t-costs)

100

—costpnl

= = delta.hedge.shares
= -option.pnl

= stock pnl

+ + stock pos.shares

« =total.pnl

value (dollars or shares)

-100

timestep (D*T)

Figure 2: Stock & options P&L roughly cancel to give the (relatively low
variance) total P&L. The agent trades so that the position in the next
period will be the quantity —100 - A rounded to shares
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Example: T-cost aware agent (discrete & t-costs)
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Kernel density estimates of total cost & volatility
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Figure 3: Kernel density estimates for total cost (left panel) and volatility
of total P&L (right panel) from N = 10,000 out-of-sample simulations.
The “reinf" policy achieves much lower cost (t-statistic = —143.22) with
no significant difference in volatility of total P&L.
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Kernel density estimates of total P&L
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Figure 4: Kernel density estimates of the t-statistic of total P&L for each
of our out-of-sample simulation runs, and for both policies represented
above (“delta” and "reinf”). The “reinf” method is seen to outperform in

the sense that the t-statistic is much more often close to zero and
insienificant. 35 / 40



Conclusions |

We have introduced a RL system that hedges an option under
realistic conditions of discrete trading and nonlinear t-costs

» The approach does not depend on the existence of perfect
dynamic replication. The system learns to optimally trade off
variance and cost, as best as possible using whatever securities
it is given as potential candidates for inclusion in the
replicating portfolio

» It accomplishes this without the user providing any of the
following information:

>
| 4

vVvyyvyyYy

the strike price K

the fact that the stock price process is a geometric Browning
motion

the volatility of the price process

the Black-Scholes-Merton formula

the payoff function (S — K), at maturity

any of the Greeks
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Conclusions I

» A key strength of the RL approach: It does not make any
assumptions about the form of t-costs. RL learns the
minimum variance hedge subject to whatever t-cost function
one provides. All it needs is a good simulator, in which t-costs
and options prices are simulated accurately
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