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State Space
Model/Observer Based

Ideal when:
• MIMO

• plant info is abundant.
• performance is critical 
at specific conditions.

1.1 Picture History of 
Controls by Zhou et. Al.

Cartoons from the standard 
text book Robust & Optimal 
Control by Zhou et. Al.

PID’s
Gain/Phase Margin
Simple but fiddly!

Ideal when:
• plant info is scarce.

• performance not critical.
• inverse of plant is close 

to a PID! 

Robust Design Philosophy
Ideal for partially known 

systems:
• nominal low order physics is 

known.
• uncertainties, variations and 
disturbances can be bounded.

• performance is critical over a 
wide range of conditions.



1.2 Robust Controls: μ-
Synthesis & Analysis

• Basic math framework: Doyle et. Al. ~1988.
• MATLAB® tools ~ 1995.
• Similar to 6σ philosophy

- Design a  controller to make the system performance and stability 
insensitive to bounded operational and behavioral variations by design.

- Upfront Robust Design philosophy is at the core of this approach.
• Find a controller with guaranteed stability and performance 

margins subject to bounded uncertainties.
• μ- Analysis is powerful for linear systems:

- Can use it to assess robustness no matter how the controller was
synthesized.  

• μ- Synthesis has issues because outputs a “Magic” controller:
- Controller states are not physically tractable.
- High order controller needs reduction.



1.3 Robust Controller 
Design Setup

Generalized Plant: P
- Fuel Metering System
- Includes Desired Performance

Uncertainties: Δ
- Unmodeled Dynamics
- Sensor Limitations

P Δ Combinations:
- Family of Plants 

Controller: K
- MIMO
- Sensor Input Vector y 
- Controller Output Vector u

Disturbances: w
- Load Disturbances

- Friction and Flow Forces
- Commands

Penalties: z
- Tracking Error
- Control Energy

Objective of μ-Synthesis:
- Design For Worst Case Signals and 

Systems -> Robust Performance
- Minimize the close loop energy gain 

from w to z over all frequencies for 
the whole family of P Δ plants

- Locate the easiest way (smallest Δ) to 
perturb performance and stability.



1.4 Powerful Machinery 
Under the Hood

P

K M

Δ

Compute D:  μ Problem

P

K

D-1 D

Compute K:  H∞ Problem↔

μ Synthesis:

μ = 1/(size of the smallest destabilizing perturbation)



2.1 Basic Limitations of 
Current Robust Controls Tools 

• Basic math theory is 
sound but the tools output 
a controller that is 
physically not tractable or 
“Magic”.

• The Synthesized 
controllers are high 
order, complex and not 
directly practical for 
many applications.

• Many (if not most) real 
plants are non-linear, but 
the theory and tools are  
purely linear. 

• Not clear where to add 
nonlinear compensation

• Design weights used to drive 
synthesis are not physically 
meaningful.

• Hard to interpret what μ
values really mean!
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2.2 Practical Limitations of 
Current Robust Controls Tools 

• The complete controller design process undefined.
• μ values do not enable NPI team interdisciplinary 

collaboration.
• Visualization of results and trade-offs and 

comparison with other controllers.
• How to convince OEM of safety critical machinery to 

trust this controller.
• How to debug a problem in the field or during 

development when the plant states with physical 
meaning are not available.

• No features to enable Diagnostics and Prognostics.



3.1 Physics Based μ-Synthesis: 
A practitioner's breakthrough

New approach:
• Physics based μ-synthesis 

(Builds on available μ-Tools in 
Matlab).

• Extract reduced order 
controller or manually design a 
controller.

• Use numerical optimization 
(MATLAB Optimization 
Toolbox)  to match the I/O 
map of the reduced controller 
to the full μ-controller.

• Plot compares the full μ-
controller with the final one.
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3.2 Before & After Physics 
Based μ-Synthesis

Actual Plant States During 
Step

Observer States 
Before

Observer States 
After

• Physically meaningful states help detect 
problems:

• e.g. can ask: why is this state not tracking the real 
plant state?



2 DOF
Design Model 

Physics-Based
μ Synthesis

Extract Reduced
Order Controller

Match Reduced 
Controller to

µ Design

Continuous to
Discrete

Test with
High Fidelity

Model

Conceptual Design

Physics-based
Controller 

Convert to
Fixed Point

Insert H/W
Specific Math

Test with
High Fidelity

Model

Preliminary
Design

H/W Specific
Physics-based

Controller 

Generate
Embedded

Code

Test with
Real Valve
(No Flow)

Complete Valve
With Controller

Test with
Flow

Detail
Design

Very 
Expensive

Expensive

3.3 The Design Process

Robustness
V&V

Systems Design OptimizationRequirements

Plant Identify

System Models

Minimize Expensive Iterations
With Robust Controls



3.4 The 2-DOF Design Model in 
Simulink

Torque Uncertainty

Resistance Uncertainty

Sensor Uncertainties

Ideal Response

Load Disturbance

Tracking Requirement

Sensor Noise

Nominal
Plant

Controller



4. Industrial Application to 
GS16 Turbine Metering System

• Large nonlinear friction due to 
stringent turndown ratios and flow 
accuracy requirements.

• Stringent Performance and Stability 
Requirements:
• positioning accuracy better than 0.005 %.
• step response

• 100 ms rise time 
• zero over/undershoot

• frequency response 
• upper and lower bounds on magnitude 

and phase response 
• wide operational variations 

(temperature, pressure, supply voltages, 
flow loads, friction, command and 
sensor noise etc). 



4.1 Iteration 1 Results: Measured 
Robustness to Friction: Step Response

Response remained close to ideal (red curve) despite 3 fold rise in friction.
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4.2 Iteration 1 Results: Measured 
Robustness to Friction: Frequency 

Response.
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Magnitude and Phase response remained ideal up to very high frequencies:
• despite 3 fold rise in friction!



4.3 V&V : Frequency 
Response

• Plot compiles data from 100 tests at extreme conditions. 
•The worst case performance must remain inside bounds.

• The ability to design to meet specs upfront is key!



4.4 V&V:  Step 
Response

• Measured step responses 
at extreme conditions.

• The worst case rise time 
must remain below 100 ms 
(10% to 90% criterion).

• The ability to design to 
meet specs upfront is key!



4.5 Practical Hurdles: These 
problems were not trivial ! 

• How to detect coding problems or design mistakes:
• Incorrect sampling rates.
• Finding the right balance between gains and sensor limitations.

• How to cope with design changes:
• Multi-body dynamics issues as the shaft was extended to add a 

second position sensor.
• Numerical overflow problems due to incorrect fixed point scaling.

• Physics-Based approach always helped because:
• We could log physically meaningful observer states at run time.
• We found the source of some problems by checking for physically 

impossible behavior or checking whether the observer was 
tracking. 



4.6 Experienced Advantages of 
Physics-Based μ-Synthesis 

• Fast Cycle Time or Time to Market benefits since:
• mistakes are made faster upfront.
• the iterative work was shifted upfront in the design process.
• quick resolution of root cause of problems.

• Re-use benefits (e.g. for next project) since:
• majority of the work was at a higher abstraction level.

• Non-linear benefits since:
• the Physical meaning gave insight and handles to extend the 

application of a purely linear tool to a highly non-linear problem.
• V&V Benefits since:

• minimized the build-test-fix cycle.
• more robust to spec changes (e.g. bandwidth change).
• more robust  to variation in customer use profile.

• Easier to explain the function to the rest of the 
development team.



4.7 Remaining Problems 

• The relationship of design weights and D-scales 
to physics is not clear.

• Interpretation of μ-plots in terms of well 
understood physics are very difficult:
• Try explaining to NPI team members that we need to 

reduce friction because μ (the infimum singular value)  
is too high. Good Luck!

• Visualization of the μ-analysis results:
• Which uncertainty, noise, disturbance or plant 

characteristic is the main robust performance or 
stability driver at each frequency?

• How can we trade Robust Performance and 
Stability?  



5. Recommendations for Future 
Tool Improvements

• Better visualization and interpretation of μ-Synthesis results:
• Show which elements (e.g. sensor quality, mechanical uncertainties etc.)  

are driving robust performance and stability at each frequency.
• The underlying math is there but we need tools to better interpret the 

results.
• Link to 6 σ terminology.

• Develop tools to enable purely physics driven μ-Synthesis  process:
• Physics of Design Weights and States
• Meaning of D-Scales.
• Useful decomposition.
• Approximately retaining physical meaning after reduction.

• For more information please read:
• Paper by K E Shahroudi in IEEE TCST 2006, vol. 14, no6, pp. 1097-1104.
• Presentation by the same authors at ACC 2007 Conference  in New York 

this summer. 



Conclusions

• We have measured unprecedented robust performance and 
stability in a very tough industrial controls application.

• We built a Physics-Based Robust Controller Synthesis Process 
on top of existing Matlab Toolboxes (μ-Tools, Optimization 
and Simulink).

• Robust Design Philosophy is infusing many large OEM’s 
(such as GE) but the difficulty is:
• How to generate robust designs upfront by synthesis rather than build-

test-fix cycles.
• How to relate their normal robustness measures to metrics they already 

understand (e.g. Six Sigma terminology).  
• We believe these approaches can shine for highly complex 

MIMO type problems elsewhere.
• We identified some key directions for improving the Robust 

Controls Synthesis tools.



6.1 Integrated Energy Control and 
Optimization Solutions from 
Woodward: Aircraft Engine

See  www.woodward.com for details

• Systems Integration
• Fuel Systems

• Fuel Metering, Pump, 
Actuation, Air Valves, 
Specialty Valves.

• Combustion System
• Fuel Injection, Ignition, 

Manifolds, Sensors.
• Heat Management

• Heat Exchangers, Lube and 
Scavenge Pumps, Filtration 
System, Fuel/Oil Sensors.

• Electrical System
• Electronic Control, Sensor 

Suite and Power Systems.

http://www.woodward.com/


6.2 Integrated Energy Control and 
Optimization Solutions from 

Woodward: Reciprocating Engine

See  www.woodward.com for details

http://www.woodward.com/
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