
©
20

08
 T

he
 M

at
hW

or
ks

, I
nc

.

® ®

New Concepts and Tools for Effective
Verification and Validation Based on
Model Analysis
Master Class

2

® ®

Today’s Agenda

� Quick Demo
� Challenges
� Methods for Early Verification and Validation

� Robustness Testing

� Automatic Test Generation

� Property Proving

� Questions and Answers

3

® ®

Poll

� Do you test your models?
� Do you have coverage requirements?

� How hard is it to reach 100% coverage?

4

® ®

Requirements

FPGA ASIC

Digital
Electronics

VHDL, Verilog

Implement

Integration

DSP

Embedded
Software

C, C++

MCU

Address the Entire Development Process

Design

Physical Components

Environment

Algorithms

Requirements

G
en

er
at

e G
enerate

Integration Testing
Software Integration Testing
Hardware-in-the-Loop Testing

Hand-
Generate

System V and V
Requirements Validation
Robustness Testing
Modeling Standards Checking

Component V and V

Code Verification
Code Correctness
Processor-In-The Loop Testing

Design Verification
Model Testing
Coverage & Test Generation
Property Proving

5

® ®

Requirements

FPGA ASIC

Digital
Electronics

VHDL, Verilog

Implement

Integration

DSP

Embedded
Software

C, C++

MCU

Address the Entire Development Process

Design

Physical Components

Environment

Algorithms

Requirements

G
en

er
at

e G
enerate

Integration Testing
Software Integration Testing
Hardware-in-the-Loop Testing

Hand-
Generate

System V and V
Requirements Validation
Robustness Testing
Modeling Standards Checking

Component V and V

Code Verification
Code Correctness
Processor-In-The Loop Testing

Design Verification
Model Testing
Coverage & Test Generation
Property Proving

Master Class

6

® ®

Verification and Validation Challenges

� Management of tests and test assets

� Writing tests for 100% coverage of control logic is hard

� Some requirements are difficult to test

7

® ®

Testing in Simulation

FPGA ASIC

Digital
Electronics

VHDL, Verilog

Implement

Integration

DSP

Embedded
Software

C, C++

MCU

Design

Physical Components

Environment

Algorithms

Functional Requirements

G
en

er
at

e G
enerate

Hand-
Generate

�Design Verification
�SystemTest™
�Simulink® Verification and Validation™
�Simulink Design Verifier™

�Code Verification
�Real-Time Workshop® Embedded
Coder™
�Embedded IDE Link™ products
�Target Support Package™ products

Verify that design meets
requirements

Verify that the behavior of
source code and object code
matches the model

8

® ®

Requirements

Early Validation and Robustness Testing

Design

Physical Components

Environment

Algorithms

Requirements

System V and V
Requirements Validation
Robustness Testing
Modeling Standards Checking

9

® ®

System V and V - Example

� Evaluation of robustness of a DC Motor model
� Assessment of model accuracy in predicting performance variability

of real systems

10

® ®

Compute clusterCompute cluster

CPU

CPU

CPU

CPU

MATLAB® Distributed Computing Server™MATLAB® Distributed Computing Server™

Scheduler

Result

Result

Result

Result

Client MachineClient Machine

Task

Task

Task

Task

Worker

Worker

Worker

Worker

Parallel
Computing
Toolbox™

TOOLBOXES

BLOCKSETS

Result

Job

System Test with Distributed Computing

11

® ®

Management of Tests and Test Assets
SystemTest™

� Authoring
� Creating tests from requirements

� Importing existing test data from
Excel

� Generating tests with Simulink
Design Verifier

� Execution and Reporting
� SystemTest plots and test report

� Benefits
� Automate test execution

� Build consistent test execution
environment for repeatable results

� Create baselines of design
behavior and run them in
regression

� Continuously improve quality of
models and generated code

� Export tests and test results for
testing on hardware

12

® ®

Test Generation Workflow

FPGA ASIC

Digital
Electronics

VHDL, Verilog

Implement

Integration

DSP

Embedded
Software

C, C++

MCU

Design

Physical Components

Environment

Algorithms

Functional Requirements

G
en

er
at

e G
enerate

Hand-
Generate

Code Harness

C

Detailed models
Component

Source Code

C

Analysis
Model

Test
Application

Code
Generation

�Design
Verification

�Code
Verification

13

® ®

Model Coverage
Simulink Verification and Validation

� Structural metric
� Measure of test completeness

TT, FT
TT, TF

TT, FT
TT, TF if (X & Y)

Z = 1;
else

Z = -1;
end

Example MC/DC Coverage

MC/DC Coverage
� each condition
independently changes
the decision outcome

Decision

Condition

14

® ®

Model Coverage Tool
Simulink Verification and Validation

� Model Coverage tool reports coverage metrics
� User must provide input data for the simulation

15

® ®

Objectives for Test Generation
Simulink Design Verifier

if (X & Y)
Z = 1;

else
Z = -1;

end

Affects (X & Y)
to be T and F?

Affects (X & Y)
to be T and F?

Affects (X & Y)
to be T and F?

Affects (X & Y)
to be T and F?

TT, FT
TT, TF

TT, FT
TT, TF

16

® ®

Test Generation for Coverage
Simulink Design Verifier

� Generating tests to reach coverage objectives

Test generation harness with the
copy of the original model Test inputs that ensure complete

coverage

Test Generation

17

® ®

Test Generation Results – Harness Model
An interface block builds up
vectors and cast signals to the
needed data types

Test Cases are captured
in a Signal Builder block

Input data sequences
drive system from its
initial configuration

Original model copied to
the harness

18

® ®

Code Testing with Generated Signals
Simulink

� Software-in-the-loop
� On the host

� Processor-in-the-loop
� On the target processor

� Independent code testing
environment
� Generated signals and model outputs

are saved as a .mat data file
� Exported input signals drive code

tests
� Exported model outputs become

expectation values for code testing

19

® ®

Processor-In-The-Loop Testing
Embedded IDE Link™ TS (for Altium® TASKING®)

PIL also provides execution profiling, code coverage reports, and interactive debugging

Simulink:

Real-Time Workshop® and TASKING:

ECU:

� Model in simulation and code on the processor running in
parallel

20

® ®

Demonstration

� Demonstration of test generation with Simulink Design
Verifier

21

® ®

Thrust Reversers

22

® ®

Thrust Reversers Should not be Deployed
During Flight

23

® ®

Thrust Reverser Deployment
Requirements

� The following requirements shall be met prior to deploying
the thrust reversers:
� Weight on Wheels

� Each main gear, each redundant

� Wheel Speed Sensors
� Each main gear

� Airspeed Limit
� Redundant Sensors

� Throttle Positions
� Each throttle, each redundant

24

® ®

Proving

FPGA ASIC

Digital
Electronics

VHDL, Verilog

Implement

Integration

DSP

Embedded
Software

C, C++

MCU

Design

Physical Components

Environment

Algorithms

G
en

er
at

e G
enerate

Hand-
Generate

� Proving Design Properties
Simulink Design Verifier

� Proving Code Correctness
PolySpace™ Server for C/C++

Prove that design meets
the key functional
requirements

Prove that code meets
non-functional runtime
requirements

RequirementsRequirements

25

® ®

Property Proving Workflow

FPGA ASIC

Digital
Electronics

VHDL, Verilog

Implement

Integration

DSP

Embedded
Software

C, C++

MCU

Design

Physical Components

Environment

Algorithms

G
en

er
at

e G
enerate

Hand-
Generate

RequirementsFunctional Requirements

Augmented
Component Model

Analysis
Report

Model Harness

Counterexample

26

® ®

Property Proving – Overview
Simulink Design Verifier

� Design (Structure) ->

� Design (Behavior) ->

27

® ®

Demonstration

� Demonstration of Property Proving with Simulink Design
Verifier

28

® ®

Modeling Functional Requirements
Simulink Design Verifier

Functional Requirement:
� If 2 or more thrust sensors are >0, the thrust reverser will not

deploy

29

® ®

Modeling Functional Requirements
Expressing requirements with temporal aspects

After condition ABC is true for X sample periods the controller shall
enter mode XYZ within Y samples.

30

® ®

Proving Design Properties
Simulink Design Verifier

Property Proving Harness augmented
with design properties

Detailed report and violations

Property
Proving

31

® ®

Property Proving - Counterexample

� Leads to improvement of design and/or requirements

Counterexample!

32

® ®

Improvements

� After some quality design time…

33

® ®

Wheel Speed Check Errors

� Forgot the “=“ case

34

® ®

Throttle Logic Significantly Flawed

� What if 1 throttle is higher
than the threshold, and
1 is lower?

35

® ®

Proving Properties – Workflows
Simulink Design Verifier

1. Authoring
� Highly Iterative
� Leads to improvement in

design and in specifications

2. Execution and Reporting
� Automated

� Part of the regression
testing harness

� Benefits
� Leads to precise definition of low

level functional requirements

� Once established properties
represent a model of design
behavior

� Minimizes a chance of
implementing undesired behavior

36

® ®

©
20

07
 T

he
 M

at
hW

or
ks

, I
nc

.

Closing Remarks

37

® ®

SystemTest
Simulink Verification and Validation
xPC Target

xPC Target
Data Acquisition Toolbox
Instrument Control Toolbox

PolySpace products
Embedded IDE Link products

Target Support Package products

Simulink Verification and Validation
Simulink Design Verifier

SystemTest

Requirements

FPGA ASIC

Digital
Electronics

VHDL, Verilog

Implement

Integration

DSP

Embedded
Software

C, C++

MCU

Verification and Validation Tools

Design

Physical Components

Environment

Algorithms

Requirements

G
en

er
at

e G
enerate

Integration Testing
Software Integration Testing
Hardware-in-the-Loop Testing
Hardware Connectivity

Hand-
Generate

System V and V
Robustness Testing
Modeling Standards Checking
Requirements Validation

Component V and V

Code Verification
Code Correctness
Processor-In-The Loop Testing

Design Verification
Model Testing
Coverage and Test Generation
Property Proving

38

® ®

Do I Need To Implement All / Some of the
New Verification and Validation Methods?

� Traditional Verification and Validation Methods
� Hardware Integration Testing

� Software Integration Testing

� Unit Testing of Code

� Ad-hoc Testing in Simulation

� Methods for Early Verification and Validation
� Traceability

� Modeling and Coding Standards Checking

� Model Testing

� Proving Design Properties and Code Correctness

39

® ®

Motorola Creates Electric Vehicle Battery
Management Controller with Real-Time
Workshop Embedded Coder

Challenge
To develop battery management controller
software within a tight deadline

Solution
Use integrated tools for Model-Based Design
and code generation from The MathWorks to
design, test, and manage requirements for the
controller

Results
� Automatic generation of efficient C code
� Optimized memory resources
� Ability to detect design flaws before

generating code

To validate the design against the

customer’s requirements, the engineers

associated the model components to the

written requirements with the Requirements

Management Interface. “Internal reviews

were then easy, and we could demonstrate

to our customer that all the requirements

had been met.”

Salam Zeidan

Software Manager

Motorola Automotive

To validate the design against the

customer’s requirements, the engineers

associated the model components to the

written requirements with the Requirements

Management Interface. “Internal reviews

were then easy, and we could demonstrate

to our customer that all the requirements

had been met.”

Salam Zeidan

Software Manager

Motorola Automotive

The Motorola electronic control unit

40

® ®

Model-Based Design for Safety-Critical
Applications Success Stories

Alstom Generates Production Code for Safety-
Critical Power Converter Control Systems
• Defect-free, safety-critical code generated and certified
• Development time cut by 50 percent

“the railway application was the first with
automatically generated code to receive TÜV certific ation.”

Honeywell Generates DO-178B Certified Code
• 1,000,000+ lines of code certified in a single year
• 6.3 sigma quality achieved

Institute for Radiological Protection and Nuclear
Safety Verifies Nuclear Safety Software with
PolySpace™ Products for C/C++

41

® ®

Summary

� Model-Based Design is a platform that enables you to start verification
and validation of designs and embedded software early

� When building a verification environment for your models and the
generated code there are several different methods you can use to
increase confidence in your designs
� Traceability

� Modeling and Coding Standards checking
� Testing
� Proving

� The MathWorks consulting and training teams can help you create a
plan for the optimization of your verification and validation process

