“, MathWorks:

Leveraging Formal Methods — Based
Software Verification to Prove Code
Quality & Achieve MISRA compliance
Prashant Mathapati ‘¢

Senior Application Engineer
MATLAB EXPO

© 2013 The MathWorks, Inc.

@\ MathWorks:
The problem

Complex systems can fail ... with drastic consequences

= Ariane-5, expendable launch system
— Overflow error

— Resulted in destruction of the launch vehicle

- USS Yorktown, Ticonderoga class ship
— Divide by zero error
— Caused ship’s propulsion system to fail

= Therac-25, radiation therapy machine
— Race condition and overflow error
— Casualties due to overdosing of patients

. \§) v

‘ &\ MathWorks

When is it safe to ship?

of all bugs are
O runtime errors
- IBM Study
of all medical devices

O sold in U.S. between
O ‘99 and '05 recalled for
software failures
- U. of Patras (Greece) Study

‘ &\ MathWorks

Analyzing and proving embedded software

« Good design and testing
— Helps eliminate functional errors

= But, robustness concerns may still exist
— Undetected run-time errors will cause catastrophic failure

= Polyspace: static code analysis using formal methods
— Address robustness concerns

— Ensures safe and dependable software

‘ &\ MathWorks

How does Polyspace help you?

A/, %7
Finds bugs

= Checks coding rule conformance (MISRA/JSF/Custom)
Provides metrics (Cyclomatic complexity etc)
Proves the existence and absence of errors
Indicates when you’ve reached the desired quality level

= Certification help for DO-178 C, ISO 26262, ...

@\ MathWorks:

Can you find a bug?

1 int new position(int sensor posl, int sensor pos2)

2 H{

3 int actuator position;

- int %, y, tmp, magnitude;

& actuator position = 2; /* default */

7 tmp = 0; /* wvalues */

B magnitude = sensor posl / 100;

9 y = magnitude + 5;

10

11 while (actuator position < 10)

12 H {

13 actuator position++;

14 tmp += sensor posZ / 100;

15 v 4= 3;

1le B 1

17 if ((3*magnitude + 100) > 43)

18 H { .-
19 magnitude++; Could there be a bug on this line?
20 = T e

<:::§; actuator position = x / (x - ¥); :::::>

22 ki T
23 return actuator position*magnitude + tmp; /* new wvalue */
24 -}

@\ MathWorks:

Other potential run-time errors to consider

1 int new position(int sensor posl, int sensor pos2)

2 H{

3 int actuator position; -

- int %, y, tmp, magnitude; ariables may no

5 e initialized

& actuator position = 2; /* default */

7 tmp = 0; /% wvalues */

B magnitude ={sensor posl)/ 100;

9 v =Cmagnitud : OverﬂOW
- potential
11 while #&Ctuator positig® < 10)

12 H {

13 actuator OSitl@

| e ey 00 Sivision by
e zero potential
17 H]if e@waﬁn > 43)

18 E {

0 x =¢@ctuator_positioy; Dead code
21 actuator position m potential
22 } ’

23 returniCactuator_posit
24 -}

&\ MathWorks

Exhaustive testing

= If both inputs are signed int32
— Fullrange inputs: -231-1 .. +231-1
— All combinations of two inputs: 4.61X10*8 test-cases

= Test time on a Windows host machine
— 2.2GHz T7500 Intel processor
— 4 million test-cases took 9.284 seconds
— Exhaustive testing time: 339,413 years

Exhaustive Testing is Impossible

| ‘MathWorks&
Polyspace demonstration

Results from Polyspace

‘ MathWorks

| 21

Source

Results Statistics | where_are_errors.c _polyspace_rnain.c|

{

int actuator position;

int ®, vy, tmp, magnitude;

{

actuator positiont+;

tmp += sensor_pos2 / 100;

y = 3;

!
if ((3*magnitude + 100) > 43}

i

magnitudet++;

X = actuator position;

actuator position = x p (x - ¥);

} Jop-erator / on type int 32
return actuator position¥magnit| lefi 10 v value */
) right: [-21474835 .. -1]

result: [-10 .. 0]

4
Source @ Data Range Configuration

10

4\ MathWorks
Results from Polyspace

static void pointer arithmetic (void) {
. int array[100];
Green: reliable int *p = array;

safe pointer access int i;

Red: faulty

out of bounds error P+ variable ' (int32): [0 .. 99]
J assignment of I’ (int32): [1 .. 100]

Gr'ay: dead if (get bus status() > 0) {
if (get o0il pressure() > 0) {
*p = 5;

unreachable code

} else {
Orange: unproven \ its;
may be unsafe for some }
conditions }

i1 = get bus status();

Purple: violation if (1 >=0)
MISRA-C/C++ or JSF++ *(p - i>7= 10;
code rules } i

}

Range data
tool tip
11

‘MathWorky
Validation and Verification

Proven Correct |~ Unproven
- Proven

=
Q
=

Functionality

L . '
" 4 Implementation ion

(Runtime Correctness)

12

‘ MathWorks

Validation and Verification

Proven Correct |~ Unproven
- Proven

Functionality l«;ﬁ

Polyspace
High

|—
o
=

Implﬁentation
(Runtime Correctness)

13

&\ MathWorks

How Is Polyspace code verification unique?

Statically verifies all possible executions of your code
(considering all possible inputs, paths, variable values)

= Proves when code will not fail under any runtime conditions

= Finds runtime errors, and
without exhaustive testing

= Gives insight into runtime behavior and data ranges

- Mathematically sound — has no false negatives

14

DO-178 certification credit

Certification Credit for Polyspace Bug Finder

Annex A |Objective DO-331, Credit Taken
orC DO-332 or
Table DO-333
Reference
Table (4) Source code complies with (FM 634 f Partial —see Table FM A-5. O0.A-5 MB.A-S (4)
FM.A-5 standards FM.6.3.4.d Source Code Complies with Standards
Table (6) Source code 15 accurate and ([FM 63 4b Partial — see Table FM.A-5. 00.A-5. MB.A-5 (6)
FM.A-5 consistent FM63.¢c Source Code Te Acenrate and Conzistent k
FM.6.3.41 Certification Credit for Polyspace Code Prover
Table (4) Source code complies with |00 634.d Partial - — -
00.A-5 e R Sonch :pgex A |Objective ggjg;,or Credit Taken
Table (6) Source code 15 accurate and (00.6.3.4.1 Partial - |Taple DO-333
00.A-5 consistent Source Reference
Table (4) Source code complies with |MB.6.3.4.d Partial - [Table (2) Source code complies with |FM.6.3.4.a Partial —see Table FM.A-5. O0.A-5. MB.A-5 (2)
MB . A-5 standards Source| [FM.A-5 software architecture FM634b Source Code Complies with Software Architecture
Table (6) Source code is accurate and (MB.63 4. f Partial - = OF i YRR — = =5
: - able ource code 15 ve e 034e Partial —see Table FM.A-5. 00.A-5 MB.A-5
MB A-5 consistent Source — - EM6.3 4.0 Source Code Is Verifiable
Table (6) Source code 1s accurate and [FM.634Db Partial — see Table FM.A-5 Q0 A-5 MB.A-5 (6)
FM.A-5 consistent FM63.c Source Code Is Accurate and Consistent
FM 6341
Table {10) Formal analysis cases and |FM.63.6.a Full — this 1s accomplished as part of the Polyspace
FM.A-5 procedures are correct FM6360b Code Prover tool qualification
Table {11) Formal analysis resulis are ([FM.63.6.c Partial — Polyspace Code Prover performs the
FMA-5 correct and discrepancies analysis but the user nust explain discrepancies
explained found by the analysis
Table (12) Requirements formalization |FM.6.3 1 Full — this 1s accomplished as part of the Polyspace
FM.A-5 1s correct Code Prover tool qualification
Table {13) Formal method is correctly |[FM 6.2.1 Full — this is satisfied by the Polyspace Code
FMA-5 defined. justified and Prover Theoretical Foundation document
appropriate
Table (1) Executable Object Code FM.6.7.c Partial — see Table FM_A-6 (1) Executable Object
FM A-6 complies with high-level Code Complies with High-Ievel Requirements
requuemenrs

@\ MathWorks

15

Applicability to ISO 26262

ISO 26262-6 Software unit design and implementation

Walk-through
Inspection

Semi-formal verification
Formal verification
Control flow analysis
Data flow analysis
Static code analysis

Semantic code analysis*

A

++

+

+

B

+

++

++

+

C DN

o

++

++

+

++

++

++

+

o

++

++

+

++

++

++

+

Polyspace Bug Finder,
Polyspace Code Prover

Polyspace Code Prover

Polyspace Bug Finder,
Polyspace Code Prover

Polyspace Code Prover

Table 9 — Methods for the verification of the software unit design and implementation

* ... is used for mathematical analysis of source code by use of an abstract representation of possible

values for the variables. For this it is not necessary to translate and execute the source code.

(1ISO 26262-6, table 9, Method 1h)

@\ MathWorks

16

&\ MathWorks

Why verify code in MBD?

= May contain S-Functions (handwritten code)

= Generated code may interface with legacy or driver code

= Interface may cause downstream run-time errors

= Inadequate model verification to eliminate constructional errors

= Certification may require verification at code level

17

‘ &\ MathWorks

Benefits of running Polyspace from Simulink

Find bugs in S-Functions in isolation

Check compliance for MISRA (or MISRA-AC-AGC)

Annotate models to justify code rule violations

Trace code verification results back to Simulink models*
Qualify integrated code (generated code and handwritten code)
Independent verification of generated code

Easily produce reports and artifacts for certification

* Traceability support available for TargetLink and UML Rhapsody 18

Traceability from code to models

W Pohpace Code o

B503HE 9 a9

% B WA deds

File fdit Run Review Opfions Window Help
VIR 6| Serch

2R2AY §

|
,552.
i 3%1 H

AR E R

.| Pont cho s bour
dereference of parameter ‘RDWork' (ponter to structire, ¢! 64 bis)

43

M Cestwain L Sewn | L] rwge e

& Project Manager | v, Results Manaper

porter & not sl

I
SR

Polyspace Bug Finder and Polyspace Code Prover verification results,
including MISRA analysis can be traced from code to model

4\ MathWorks

19

EADS Ensures Launch Vehicle Dependability
with Polyspace Products for Ada

Challenge

To automate the identification of run-time errors in
mission-critical software for launch vehicles

Solution

Use Polyspace products to analyze 100,000 lines of Ada
code developed in-house and by third-party contractors

Results
= Development time reduced

0
Y X o
any

L
o a5 < o] st it

‘.‘r
8

Ariane 5 launcher taking of

f.

= Subcontractor code verified
= Exhaustive tests streamlined

“The Polyspace solution is

unique - it detects run-time errors
without execution and has the
advantage of being exhaustive."

EADS Engineer

Link to user story

4\ MathWorks'

20

http://www.mathworks.com/company/user_stories/userstory15150.html?by=industry

Nissan Motor Company Increases
Software Reliability with Polyspace
Products for C/C++

Challenge

Identify hard-to-find run-time errors to improve
software quality

Solution

Use MathWorks tools to exhaustively analyze
Nissan and supplier code

Results
= Suppliers' bugs detected and measured
= Software reliability improved

= PolySpace products for C/C++ adopted by
Nissan suppliers

Nissan Fairlady Z.

“Polyspace products for C/C++
can ensure a level of software
reliability that is unmatched by
any tools in the industry.”

Mitsuhiko Kikuchi

Link to user story

Nissan Motor Company

@\ MathWorks:

21

http://www.mathworks.com/company/user_stories/userstory15142.html?by=industry

&\ MathWorks

ROI Analysis

Earlier discovery of hard-to-find run-time errors
— 66% more error detection in earlier development phases.

= More bugs found before release
— 31% more bugs found compared to manual reviews and testing.

= Shorter quality assurance cycles

— Reduce development time by as much as 39% by finding run-time
errors faster and eatrlier.

= More thorough validation of code

— Continuously improve software quality resulting in fewer run-time
errors found during later development stages where they are most
expensive to find and fix.

= Reduced development costs

— 42% reduction in total cost of development resulting in savings of
approximately $1,000 per day.

22

&\ MathWorks

Polyspace Impact in Software Development

Finding runtime errors that might have been missed
-> Improves quality and safety
Finding runtime errors earlier, when quicker/cheaper to fix
—> Saves time, saves money
Knowing how data will behave, and which code is risky
-> Improves code
-> Improves code reviews
Proving reliability and robustness without exhaustive testing
-> Shortens verification cycle
- Focuses testing where it's more effective
—> Lets you know when you're done

23

