
1© 2013 The MathWorks, Inc.

Leveraging Formal Methods – Based

Software Verification to Prove Code

Quality & Achieve MISRA compliance

Prashant Mathapati

Senior Application Engineer

MATLAB EXPO

2

The problem

 Ariane-5, expendable launch system

– Overflow error

– Resulted in destruction of the launch vehicle

 USS Yorktown, Ticonderoga class ship

– Divide by zero error

– Caused ship’s propulsion system to fail

 Therac-25, radiation therapy machine

– Race condition and overflow error

– Casualties due to overdosing of patients

Complex systems can fail … with drastic consequences

3

When is it safe to ship?

33%

of all bugs are

runtime errors
- IBM Study40%

of all medical devices

sold in U.S. between

’99 and ’05 recalled for

software failures
- U. of Patras (Greece) Study

4

Analyzing and proving embedded software

 Good design and testing

– Helps eliminate functional errors

 But, robustness concerns may still exist

– Undetected run-time errors will cause catastrophic failure

 Polyspace: static code analysis using formal methods

– Address robustness concerns

– Ensures safe and dependable software

5

How does Polyspace help you?

 Finds bugs

 Checks coding rule conformance (MISRA/JSF/Custom)

 Provides metrics (Cyclomatic complexity etc)

 Proves the existence and absence of errors

 Indicates when you’ve reached the desired quality level

 Certification help for DO-178 C, ISO 26262, …

6

Can you find a bug?

Could there be a bug on this line?

7

Other potential run-time errors to consider

Overflow

potential

Variables may not

be initialized

Division by

zero potential

Dead code

potential

8

Exhaustive testing

 If both inputs are signed int32

– Full range inputs: -231-1 .. +231-1

– All combinations of two inputs: 4.61X1018 test-cases

 Test time on a Windows host machine

– 2.2GHz T7500 Intel processor

– 4 million test-cases took 9.284 seconds

– Exhaustive testing time: 339,413 years

Exhaustive Testing is Impossible

9

Polyspace demonstration

10

Results from Polyspace

11

static void pointer_arithmetic (void) {

int array[100];

int *p = array;

int i;

for (i = 0; i < 100; i++) {

*p = 0;

p++;

}

if (get_bus_status() > 0) {

if (get_oil_pressure() > 0) {

*p = 5;

} else {

i++;

}

}

i = get_bus_status();

if (i >= 0) {

*(p - i) = 10;

}

}

Results from Polyspace

Green: reliable
safe pointer access

Red: faulty
out of bounds error

Gray: dead
unreachable code

Orange: unproven
may be unsafe for some

conditions

variable ‘I’ (int32): [0 .. 99]

assignment of ‘I’ (int32): [1 .. 100]

Range data
tool tip

Purple: violation
MISRA-C/C++ or JSF++

code rules

12

Validation and Verification

F
u

n
c
ti
o

n
a

lit
y

Implementation

(Runtime Correctness)

Compiler Lint

Code Inspection

Testing

Low

High

High

Unproven

Proven
Proven Correct

13

Validation and Verification

 Compiler  Lint

 Code Inspection

 Testing

 Polyspace

Low

High

High

Unproven

Proven
F

u
n

c
ti
o

n
a

lit
y

Implementation

(Runtime Correctness)

Proven Correct

14

How is Polyspace code verification unique?

Statically verifies all possible executions of your code

(considering all possible inputs, paths, variable values)

 Proves when code will not fail under any runtime conditions

 Finds runtime errors, boundary conditions and unreachable code

without exhaustive testing

 Gives insight into runtime behavior and data ranges

 Mathematically sound – has no false negatives

15

DO-178 certification credit

16

Methods
ASIL Applicable Tools /

ProcessesA B C D

1a Walk-through ++ + o o

Polyspace Bug Finder,

Polyspace Code Prover
1b Inspection + ++ ++ ++

1c Semi-formal verification + + ++ ++

1d Formal verification o o + + Polyspace Code Prover

1e Control flow analysis + + ++ ++

Polyspace Bug Finder,

Polyspace Code Prover
1f Data flow analysis + + ++ ++

1g Static code analysis + ++ ++ ++

1h Semantic code analysis* + + + + Polyspace Code Prover

Table 9 – Methods for the verification of the software unit design and implementation

Applicability to ISO 26262
ISO 26262-6 Software unit design and implementation

* … is used for mathematical analysis of source code by use of an abstract representation of possible

values for the variables. For this it is not necessary to translate and execute the source code.

(ISO 26262-6, table 9, Method 1h)

17

Why verify code in MBD?

 May contain S-Functions (handwritten code)

 Generated code may interface with legacy or driver code

 Interface may cause downstream run-time errors

 Inadequate model verification to eliminate constructional errors

 Certification may require verification at code level

18

Benefits of running Polyspace from Simulink

 Find bugs in S-Functions in isolation

 Check compliance for MISRA (or MISRA-AC-AGC)

 Annotate models to justify code rule violations

 Trace code verification results back to Simulink models*

 Qualify integrated code (generated code and handwritten code)

 Independent verification of generated code

 Easily produce reports and artifacts for certification

* Traceability support available for TargetLink and UML Rhapsody

19

Traceability from code to models

Polyspace Bug Finder and Polyspace Code Prover verification results,

including MISRA analysis can be traced from code to model

20

EADS Ensures Launch Vehicle Dependability

with Polyspace Products for Ada

Challenge
To automate the identification of run-time errors in

mission-critical software for launch vehicles

Solution
Use Polyspace products to analyze 100,000 lines of Ada

code developed in-house and by third-party contractors

Results
 Development time reduced

 Subcontractor code verified

 Exhaustive tests streamlined "The Polyspace solution is

unique - it detects run-time errors

without execution and has the

advantage of being exhaustive."

EADS Engineer

Ariane 5 launcher taking off.

Link to user story

http://www.mathworks.com/company/user_stories/userstory15150.html?by=industry

21

Nissan Motor Company Increases

Software Reliability with Polyspace

Products for C/C++

Challenge
Identify hard-to-find run-time errors to improve

software quality

Solution
Use MathWorks tools to exhaustively analyze

Nissan and supplier code

Results
 Suppliers' bugs detected and measured

 Software reliability improved

 PolySpace products for C/C++ adopted by

Nissan suppliers

“Polyspace products for C/C++

can ensure a level of software

reliability that is unmatched by

any tools in the industry.”

Mitsuhiko Kikuchi

Nissan Motor Company

Nissan Fairlady Z.

Link to user story

http://www.mathworks.com/company/user_stories/userstory15142.html?by=industry

22

ROI Analysis

 Earlier discovery of hard-to-find run-time errors

– 66% more error detection in earlier development phases.

 More bugs found before release

– 31% more bugs found compared to manual reviews and testing.

 Shorter quality assurance cycles

– Reduce development time by as much as 39% by finding run-time

errors faster and earlier.

 More thorough validation of code

– Continuously improve software quality resulting in fewer run-time

errors found during later development stages where they are most

expensive to find and fix.

 Reduced development costs

– 42% reduction in total cost of development resulting in savings of

approximately $1,000 per day.

23

Polyspace Impact in Software Development

Finding runtime errors that might have been missed

 Improves quality and safety

Finding runtime errors earlier, when quicker/cheaper to fix

 Saves time, saves money

Knowing how data will behave, and which code is risky

 Improves code

 Improves code reviews

Proving reliability and robustness without exhaustive testing

 Shortens verification cycle

 Focuses testing where it’s more effective

 Lets you know when you’re done

