

W H I T E P A P E R

Code Verification and Run-Time Error Detection Through
Abstract Interpretation

A Solution to Today’s Embedded Software Testing Challenges

Testing embedded systems is a difficult task, made more challenging by time pressure and the increasing
complexity of embedded software. To date, there have been basically three options for detecting run-time errors
in embedded applications: code reviews, static analyzers, and trial-and-error dynamic testing. Code reviews are
labor-intensive and often impractical for large, complex applications. Static analyzers identify relatively few
problems and, most importantly, leave most of the source code undiagnosed. Dynamic or white-box testing
requires engineers to write and execute numerous test cases. When tests fail, additional time is required to find
the cause of the problem through an uncertain debugging process.

Abstract interpretation takes a different approach. Instead of merely detecting errors, it automatically verifies
important dynamic properties of programs— including the presence or absence of run-time errors. It combines the
pinpoint accuracy of code reviews with automation that enables early detection of errors and proof of code reliability.
By verifying the dynamic properties of embedded applications, abstract interpretation encompasses all possible
behaviors of the software and all possible variations of input data, including how software can fail. It also proves code
correctness, providing strong assurance of code reliability. By using testing tools that implement abstract
interpretation, businesses can reduce costs while accelerating the delivery of reliable embedded systems.

This paper describes how abstract interpretation works and how you can use it to overcome the limitations of
conventional techniques for testing embedded software.

Static Analysis Code Verification Through
Abstract Interpretation

Checks for syntactic and static
semantic rules

Verifies dynamic properties of
programs

Finds some errors and generates
many warnings

Proves which code sections are
correct, which are incorrect, and
which are unreachable

Leaves an important and unknown
portion of code undiagnosed

Exhaustively investigates any code
section in the program and verifies its
reliability against all possible data
values

Challenges in Testing Embedded Software
As processing power and memory costs have decreased, embedded software applications have penetrated
virtually every industrial sector, from consumer electronics and appliances to aerospace, defense, automotive,
avionics, telecommunications, and medical devices. Over the past several years, strong demand for complete,
multi-purpose software applications has led to much larger and more complex embedded systems. In some
industries, the quantity of embedded software doubles every 18 months. Even as the number and complexity of
these applications grow, the safety-, mission-, life- or business-critical aspects of many embedded applications
continue to demand high levels of reliability and robustness.

Market pressure affects any software development. An application under development is subject to constant
changes, including specification updates and design changes. Development organizations must often meet
conflicting business objectives: deliver higher quality embedded software while reducing time-to-market. The
challenge is increased by the complexity of the applications being developed and the frequent shortage of
engineering resources.

One solution is to improve efficiency by using software tools for code generation, design, and code
instrumentation. These tools have enabled embedded software development teams to do more in less time.
However, testing and debugging tools have not kept pace with the increases in embedded software size and
complexity. As a result, the cost of testing an embedded system today can be up to 50% of total development
costs.

Early code verification is an effective way to relieve time and cost pressures. Indeed, errors detected in the late
phases of the development cycle are more difficult to debug because they must be traced back to their source
among tens or hundreds of thousands of lines of code, often by testers who did not write the code themselves.
The cost of fixing problems found late in testing is 10- to 20-fold higher 1 than the cost of fixing the same errors
during coding.

While early code verification offers clear benefits, it is still the exception rather than the rule. For many teams,
this means that testing is done close to the project’s deadline, when time pressure is at its highest. In this
environment, run-time errors, which are typically among the most difficult to find, can be missed altogether.
These errors, caused by arithmetic and other anomalies in the code (divisions by zero, out-of-bound arrays,
illegal dereferencing of pointers, read access to non-initialized data, and so on), are also known as latent faults
because they are not readily apparent under normal operation. Software developers find that up to 40% of bugs
detected in software applications during maintenance are run-time errors. These errors may cause non-
deterministic behavior, incorrect computations (such as integer overflow), or processor halt due to arithmetic
exception. They all have unpredictable, sometimes even dramatic, consequences on the reliability of the
application.

Limitations of Common Run-time Error Detection Techniques
The methods and tools conventionally used to detect and debug run-time errors rely on technology that is 20 to
30 years old. These approaches fall into three broad categories: manual code reviews, static analyzers, and
dynamic, or white-box, testing. Those techniques focus on finding errors. They are unable to prove the absence
of errors.

Manual code review can be an effective technique for finding run-time errors in relatively small applications
(comprising 10-30k lines of code). For larger systems, however, manual review is a labor-intensive process. It
requires experienced engineers to review source code samples and report dangerous or erroneous constructs, an
activity that is complex, non-exhaustive, non-repeatable, and costly. Proving the absence of run-time errors is a
much complex operation that is not manageable by code review.

Static analyzers provide very limited support for run-time error detection. Compilers, linkers, quality
measurement tools (for example, tools that report on comment rate, call-graph depth, or the code structure
complexity) can only detect errors that do not depend on program execution--for example, static expressions
composed of constants and literal values (such as static overflow), static division by a constant expression equal
to 0, and explicitly non-initialized data. Other run-time errors, such out-of-bound array access, conditionally
initialized data, and illegal dereferencing of pointers, are beyond the scope of such tools.

1 Basilli, V. and B. Boehm. "Software Defect Reduction Top 10 List." Computer 34 (1), January 2001.

2

Dynamic testing or white-box testing requires engineers to write and execute test cases. Thousands of test
cases may be required for a typical embedded application. After executing a test case, the test engineer must
review the results and trace errors back to their source. This testing process has not improved much in the last
two decades. While engineers can take other steps to improve the chances of detecting anomalies, such as code
instrumentation and code coverage, dynamic testing is based on a trial-and-error approach that provides only
partial if not minuscule coverage of all the possible combinations of values that can be encountered at run time.
Like manual code reviews, the process is resource- and time-intensive. Time spent writing the test cases and
waiting for an executable system to be developed often forces dynamic testing to be delayed until the end of the
development cycle, when errors are most expensive to fix.

Engineers who use dynamic testing to find run-time errors in embedded applications face other challenges as
well. First, testing costs increase exponentially with the size of the application. Since the number of errors tends
to be constant for a fixed number of lines of code (a conservative estimate is 2 to 10 errors per 1,000 lines), the
chance of finding these errors greatly decreases as the total number of lines in a software application increases.
When the size of source code is doubled, the testing effort generally must be multiplied by four or more to
obtain the same level of confidence as before.

Second, dynamic testing identifies only symptoms, not the cause, of the error. As a result, additional debugging
time must be spent to localize the cause of each error after it has been detected during program execution.

Tracing an anomaly back to its root cause in the code can be extremely time-consuming when the defect is
detected late in development. An anomaly detected in validation can take 100 hours to trace, while one caught
in unit testing may be localized in an hour or less. While testing activities can be automated, debugging cannot.
If every 1,000 lines of new code includes 2 to 10 errors, a 50,000 line application would contain a minimum of
100 errors. A developer spending an average of 10 hours debugging each error would need 1,000 hours to debug
the application.

Third, dynamic testing frequently leads engineers to instrument their code so that anomalies can be observed
more easily during program execution. But code instrumentation takes time, adds execution overhead, and can
even mask errors, such as memory violation and access conflicts on shared data. Furthermore, methods based
on code instrumentation detect errors only if the test cases that are executed raise an anomaly.

Fourth, the effectiveness of run-time error detection also depends on the ability of the test cases to analyze the
different combinations of values and conditions that can be encountered at run-time. Test cases generally cover
only a fraction of all possible combinations. This leaves a large number of untested combinations, including
some that may cause a run-time error.

Error-Prevention and Fault-Tolerance Techniques
Some development languages provide exception-handling capabilities that can catch anomalies when they occur
during execution, and let you decide whether the program should continue from a safety position, by recovery
on a redundant computer, or by rebooting. These capabilities usually generate execution overhead, such as pre-
and post-conditions as well as exception handlers, that which may not be compatible with the operational
specifications of embedded applications.

As a result, test engineers sometimes activate them only during testing, removing them from the product before
shipment. Run-time errors in a shipped product can cause serious, even catastrophic, results.

3

Another approach to preventing errors uses formal methods, such as theorem proving. While powerful,
theorem proving is very intrusive and requires a high degree of mathematical expertise to be efficient, limiting
its potential for use on industrial-scale applications.

Code Verification with Abstract Interpretation
Abstract interpretation bridges the gap between conventional static analysis techniques and dynamic testing by
verifying the dynamic properties of software applications at compilation time. Without executing the program
itself, abstract interpretation investigates all possible behaviors of a program – that is, all possible combination
of values – in a single pass to determine how and under which conditions the program can fail. Abstract
interpretation is a mature and sound mathematical approach. It can be seen as an extension of the compilation
techniques used by programmers to predict how a software application will behave before performing actual
tests.

An Analogy from the Physical World
An engineer who needs to predict the trajectory of a projectile in mid-air has three options:

 Make an exhaustive inventory of the different particles that will be on the projectile’s path, study their

properties, and determine how impact with each particle will affect its trajectory. Obviously, this approach is
impractical due to the huge number and variety of particles encountered during flight. Even if it was possible
to know in advance all the conditions that could be encountered at any time (such as wind speed, and cloud
drops), these would change for every new flight. This means a thorough analysis would need to be run again
before every launch.

 Launch many projectiles to derive empirical laws of motion and related error margins. These findings can be

used to estimate the trajectories within a certain confidence interval. This approach is both costly and time-
consuming, however, and each attempt will change the conclusions. Furthermore, exhaustively testing the
projectile under every possible combination of conditions is all but impossible.

 Use the laws of physics and known values (force of gravity, air braking coefficient, initial speed, and so on) to

transform the problem into a set of equations that may be solved by mathematical rules, either formal or
numeric. This approach produces solutions for a wide range of conditions that become parameters in the
mathematical model, enabling the engineer to predict projectile behavior under a variety of conditions.

Abstract interpretation is like the mathematical modeling approach. It derives the dynamic properties of data
from the software source code--that is, equations between variables--and applies them to the verification of
specific dynamic properties.

4

How Abstract Interpretation Works
Abstract interpretation relies on a broad base of mathematical theorems th
dynamic systems such lications. Instead of proceeding with the enumerative analysis of each
state of a program, abstract interpretation represents these states in a more general form and provides the rules
to manipulate them. Abstract interpretation not only produces a mathematical abstraction, it also interprets the
abstraction.

To produce a mathematical abstraction of program states, abstract interpretation thoroughly analyzes all

e substantial computing power required for this analysis has not been readily available
in the past. Abstract interpretation, when combined with non-exponential algorithms and today's increased
processing power, is a practical solution to complex testing challenges.

When applied to the detection of run-time errors, abstract interpretation performs a comprehensive

 all risky operations and automatically provides a diagnostic of "proven," "fail," "unreachable," or
"unproven" for each operation. Engineers can use abstract interpretation to obtain results at compilation time,
the earliest stage of the testing.

Applying Abstract Interpretation
To better understand how abstract interpretation works, consider a program, P, that uses two variables, X and
Y. It performs the operation:

X=X/(X-Y)

To check this program for run-time errors, we identify all possible causes for error on the operation:
X and Y may not be initialized
X-Y
X and Y may be equal and cause a division by zero
X/(X–Y) ma w or und ow

While any of these conditions could cause a run-time error, the following steps focus on the possibility of
division by zero.

We can represent all possible values of X and Y in program P on a diagra d line in Figure 1 represents
the set of (X, Y) values that would lead to a division by zero.

Figure 1: All possible values of X and Y in program P.

5

x

y y = x

+

+
+

+
++

++
+ ++

+

++
+
+
+

+
+

+

+
+

+
+

+
+

+ +
+

++

+

++

+ +

+

+
++

+

+
+ +

+

+
+

+

An obvious way to check for division by zero would be to enumerate each state and determine whether it is on
the red line. �is is the approach taken by conventional white-box testing, but it has fundamental limitations.
First, the number of possible states in a real-world application is typically very large because there are many
variables in use. It would take years to enumerate all possible states, making an exhaustive check all but
impossible.

In contrast to the brute force approach of enumerating all possible values, abstract interpretation establishes
generalized rules to manipulate the whole set of states. It builds an abstraction of the program that can be used
to prove properties.

One example of such an abstraction, called type analysis, is shown in Figure 2. �is type of abstraction is used
by compilers, linkers, and basic static analyzers by applying type inference rules. In type analysis, we project the
set of points on the X and Y axes, get the minimum and maximum values for X and Y, and draw the
corresponding rectangle. Since the rectangle includes all possible values of X and Y, if a property is proven for
the rectangle, it will be valid for the program. In this case, we are interested in the intersection between the red
line and the rectangle, because if the intersection is empty, there will never be a division by zero.

Figure 2. Type analysis projects all values of X and Y
onto the axes.

�e key drawback of type analysis is that the rectangle includes too many unrealistic values of X and Y. �is
yields poor, imprecise results and generates a large number of warning messages that o�en go unread, if the
engineer does not switch them o� altogether.

Instead of large rectangles, abstract interpretation establishes rules to build more precise shapes, as in Figure 3.
It uses techniques based on integer lattices, union of polyhedra, and Groebner bases to represent relationships
between data (X and Y) that take into account control structures (such as if-then-else, for and while loops, and
switch), inter-procedural operations (function calls), and multitask analysis.

Figure 3. Abstract interpretation establishes rules to
build more precise shapes representing relationships
between X and Y.

6

x

y y = x

+

+
+

+
++

++
+ ++

+

++
+
+
+

+
+

+

+
+

+
+

+
+

+ +
+

++

+

++

+ +

+

+
++

+

+
+ +

+

+
+

+

i j
k

l

x

y y = x

+

+
+

+
++

++
+ ++

+

++
+
+
+

+
+

+

+
+

+
+

+
+

+ +
+

++

+

++

+ +

+

+
++

+

+
+ +

+

+
+

+

Unlike compilers and static analyzers, abstract interpretation does not rely solely on the idea of computing
relationships between data types and constant values. Instead, it derives these relationships from the semantics
of each operation and operand in the program, and uses them as guides to inspect the source code.

With abstract interpretation the following program elements are interpreted in new ways:

 An index in a for loop is no longer an integer but a monotonic increasing discrete function from
lower to upper limit.

 A parameter passed to a function is no longer a variable or a constant, but a set of values that may be
used to constrain the local data used in the function.

 Any global shared data may change at any time in a multitask program, except when protection
mechanisms, such as memory locks or critical sections, have been applied

 A pointer is a data type that may create aliases between explicit data and generate side effects and
hidden concurrent accesses on shared data in multitasking applications.

 A variable not only has a type and a range of values, but also a set of equations (including control flow
sensitive relationships) that build it.

 Ultimately, run-time errors are equations, also called correctness conditions, that abstract
interpretation can solve, using the equations that tie variables together.

Examples of Abstract Interpretation
The following examples are common code constructs that produce run-time errors automatically detected by
abstract interpretation.

Control structure analysis: Out-of-bounds pointer dereferencing after a for loop

10: int ar[100];
11: int *p = ar;
12: int i;
13: for (i = 0; i < 100; i++; p++)
14: { *p = 0;}
15: *p = 5;

In this example, p is a pointer that can be abstracted as a discrete increasing function varying by 1 from the
beginning of the array ar. Upon exiting the for loop when i equals 100, the pointer p is also increased to
100. This cause pointer p to be out-of- bounds at line 15, as the array index ranges from 0 to 99. Abstract
interpretation would prove this piece of code reliable and would identify line 15 as the source of a run-time
error.

7

Control structure analysis: Out-of-bounds array access within two nested for loops

20: int ar[10];
21: int i,j;
22: for (i = 0; i < 10; i++)
23: {
24: for (j = 0; j < 10; j++)
25: {
26: ar[i - j] = i + j;
27: }
28: }

Both i and j are variables that are monotonically increasing by 1 from 0 to 9.
The operation i–j used as an index for array ar will eventually return a negative value. Abstract
interpretation of this code would prove this code reliable and would identify the out-of-bounds array access at
line 26.

Note that the run-time errors in these examples often lead to corruption of the data stored near array ar.
Depending on how and when this corrupted data is used elsewhere in the program, debugging this kind of error
without abstract interpretation can take considerable effort.

Inter-procedural analysis: Division by zero

30: void foo (int* depth)
31: {
32: float advance;
33: *depth = *depth + 1;
34: advance = 1.0/(float)(*depth);
35: if (*depth < 50)
36: foo (depth);
37: }
38:
39: void bug_in_recursive ()
40: {
41: int x;
42: if (random_int())
43: {
44: x = -4;
45: foo (&x);
46: }
47: else
48: {
49: x = 10;
50: foo (&x);
51: }
52: }

In this function, depth is an integer that is first increased by 1. It is then used as a denominator to determine
the value of advance and thereafter is recursively passed to the function foo. Checking whether the division

8

operation at line 34 will cause a division by zero requires an inter-procedural analysis to determine which values
will be passed to the function foo (see bug_in_recursive, lines 45 and 50), as it will determine the value of
‘depth.

In the preceding code, the function foo can be called in two different circumstances in the function
bug_in_recursive. When the if statement at line 42 is false, foo is called with a value of 10 (line
50).

Therefore, *depth becomes a monotonic discrete increasing function varying by 1 from 11 to 49. The
equation at line 34 will not return a division by zero.

However, when the if statement at line 42 is true, then foo is called with a value of -4. Therefore, *depth
becomes a monotonic discrete increasing function varying by 1 from -3 to 49. Eventually, *depth will be
equal to 0, causing the equation at line 34 to return a division by zero.

A simple syntax check will not detect this error, nor will all test cases. Abstract interpretation will prove all the
code reliable except line 45. This illustrates the unique ability of abstract interpretation to perform inter-
procedural analysis and distinguish problematic function calls from acceptable ones. If not fixed, a division by
zero error will cause processor halt. This kind of error can also require significant debugging time due to the
recursive constructs in use.

Multitask analysis: Concurrent access to shared data
Abstract interpretation handles control and data flow analysis and is capable of checking multitasking
applications. A key concern with such applications is ensuring that shared data and critical resources have no
unexplained concurrent access.

Data aliasing and task interleaving make it difficult to find this type of concurrent access problem.

With data aliasing, pointers are used for shared memory access. This approach can create hidden or implicit
relationships between variables, so that one variable may be unexpectedly modified during program execution
through pointers, causing sporadic anomalies. The analysis of this problem requires very efficient pointer
analysis algorithms. With abstract interpretation these can be implemented to provide a list of shared data and
the list of read and write accesses by functions and tasks along with the related concurrent access graph.

Tasks interleaving makes multitask applications problematic to debug because bugs are very difficult to
reproduce when they depend on a sequence of tasks being executed in a specific order in real-time. Abstract
interpretation takes every possible interleaving of tasks into account, for a complete control flow analysis.
Constructing these results or the concurrent access graph by hand would be exceptionally difficult.

Benefits of Abstract Interpretation for Run-time Error Detection
Abstract interpretation is an efficient, cost-effective, and rapid way to ensure delivery of reliable embedded
systems. It provides four benefits: assurance of code reliability, increased efficiency, reduced overhead, and
simplified debugging.

Assurance of code reliability
Through its exhaustive code review, abstract interpretation not only enables run-time error detection, but also
proves code correctness. This is especially important in safety-critical applications in which system failures can
be catastrophic. Traditional debugging tools are tuned to detect errors but do not verify the reliability of the

9

remaining code. Abstract interpretation makes it possible to identify code that will never cause a software fault,
thereby removing any uncertainty about the software's reliability.

Increased efficiency
By verifying the dynamics of applications, abstract interpretation lets embedded developers and testers identify
the code sections in their program that are free of run-time errors from the ones that will lead to a reliability
breach.. Because errors can be identified before code is compiled, abstract interpretation helps teams realize
substantial time and cost savings by finding and eliminating run-time errors when they are easiest to fix.

Reduced overhead
Abstract interpretation requires no execution of the software, so it produces thorough results without the
overhead of writing and executing test cases. Likewise there is no need to instrument code and then strip out
the instrumentation before shipping software. In addition, abstract interpretation can be implemented in
ongoing projects without changing existing development processes.

Simplified debugging
Abstract interpretation streamlines debugging because it directly identifies the source of each error, not just its
symptom. It eliminates time wasted tracking crashes and data corruption errors back to their source, as well as
the time previously spent trying to reproduce sporadic bugs. Abstract interpretation is repeatable and
exhaustive. Each operation in the code is automatically identified, analyzed, and checked against all possible
combinations of input values.

Run-Time Errors Detected by Abstract Interpretation
 Concurrent accesses to shared data
 Pointer de-referencing issues (null, out-of-bounds accesses)
 Out-of-bounds array accesses
 Read accesses to non-initialized data
 Invalid arithmetic operations (such as division by zero, and square root of negative numbers)
 Float, integer overflow/underflow
 Illegal type conversion (for example, float J int, long J short)

Other Dynamic Properties Detected by Abstract Interpretation
 Unreachable code
 Non-termination of loops
 Initialized return values

Abstract Interpretation Tools
The following products from The MathWorks are the only commercially available code verification tools that
implement abstract interpretation:

 PolySpace™ Client for C++
 PolySpace™ Server for C/C++
 PolySpace™ Client for Ada
 PolySpace™ Server for Ada

For more information, visit www.mathworks.com/polyspace

© MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology, SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are trademarks of The MathWorks, Inc. Other product or brand names are trademarks or
registered trademarks of their respective holders.

10

http://www.mathworks.com/polyspace
kclement
Typewritten Text
91517v01 07/12

kclement
Typewritten Text

kclement
Typewritten Text

	Code Verification and Run-Time Error Detection Through Abstract Interpretation
	A Solution to Today’s Embedded Software Testing Challenges
	Challenges in Testing Embedded Software
	Limitations of Common Run-time Error Detection Techniques
	Error-Prevention and Fault-Tolerance Techniques
	Code Verification with Abstract Interpretation
	An Analogy from the Physical World
	 How Abstract Interpretation Works
	Applying Abstract Interpretation
	Examples of Abstract Interpretation
	Inter-procedural analysis: Division by zero
	Multitask analysis: Concurrent access to shared data

	Benefits of Abstract Interpretation for Run-time Error Detection
	Assurance of code reliability
	Increased efficiency
	Reduced overhead
	Simplified debugging

	Run-Time Errors Detected by Abstract Interpretation
	Other Dynamic Properties Detected by Abstract Interpretation
	Abstract Interpretation Tools

