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Functions of Matrices

You can’t always ger back ro where you started

its role in the solution of systems of ordinary differential

equations. But have you ever wondered about the loga-
rithm of a matrix, or the square root of a matrix? These functions
also turn out to be interesting and useful.

You might already know about the matrix exponential and

In MATLAB, the functions
expm(A), logm(A), sqrtm(A)
compute the matrix exponential, matrix logarithm and matrix
square root. (The“m” in their names distinguishes them from
the ones which compute the corresponding element-by-element
functions.) The pth power of a matrix doesn’t need a named
function; it’s just
A"p
We can study these functions by checking identities involving
the functional inverses. Does

sqrtm(A*2) = A ?
sqrtm(A)"2 = A ?
expm(logm(A)) = A ?
logm(expm(A)) = A ?
(A"p)~(1/p) = A

Let’s start with a few hopefully surprising examples. For
A = [1 2; 3 4], we find that sqrtm(A~2) is not equal to
A. In fact,

A =
1 2
3 4
A2 =
7 10
15 22
sgrtm(A~2) =
2.6458 3.1623
3.8730 4.6904

ForA = [0 4; -4 0], we find that Logm(expm(A)) is
not equal to A. In fact,

A =
0 4
-4 0
expm(A) =
-0.6536 -0.7568
0.7568 -0.6536
logm(expm(A)) =
0.0000 -2.2143
2.2143 0.0000

My favorite examples are Nick Higham’s variants of the
Pascal matrices, obtained with pascal(n,2). The entries are
binomial coefficients, with curious sign patterns, stored in a
“flipped” triangular matrix. Here isn = 4.

P = pascal(4,2)

P =
0 0 0 -1
0 0 -1 3
0 1 2 -3
1 1 1 1
Squaring this matrix gives
Pr2 =
-1 - 1
3 2 1 0
-3 -1 0 0
-1 0 0 0

and sqrtm(P~2) is nowhere near P. Even more interesting,
the cube of P is the identity.

P3 =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
The cube root, (P*3)~ (1/3), is still the identity; we don’t get

P back.

What’s going on here? There are two distinct issues, one “purely”
mathematical and one computational. And, as you certainly have
anticipated, the analysis involves eigenvalues.

Let’s start with the simplest situation, the functions z*2 and
sqrt(z) applied to 1-by-1 matrices. Here we can leave off the
“m” at the end of the function name. There is no question about
the definition of z~2—just multiply z by itself. But notice that
both z and - z have the same square. This leads to our first
problem. What do we mean by sqrt (z)? The equation

wh2 = z
has two solutions; one is the negative of the other. So MATLAB,
and most other mathematical computing environments, choose
one of them for you—the one with the positive real part. If z is
real and negative, then both solutions have zero real part, so the
one with the positive imaginary part is chosen.

This choice cuts the complex plane in half. Let C(1/2)
denote the right half of the complex plane, including the positive
imaginary axis and the origin, but excluding the negative imaginary
axis. Then the function z*2 maps C(1/2) onto the entire complex
plane and, conversely, the function sqrt (z) has been chosen to
map the entire complex plane onto C(1/2). Furthermore,

sqrt(z)"2 == z
for all z, but

sqrt(z*2) == z
onlyif zisin C(1/2)

Now consider exp(z) and 10g(z), again for “monoelemental”
matrices. As with 2*2, the definition of exp(z) is not a prob-
lem. Although it is unsatisfactory in the presence of roundoff
error, the infinite series

exp(z) =1+ z + z*2/2 + z*3/6 +
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does converge for any finite, complex z and provides a rigorous
definition. But since

exp(z+2*pi*i) = exp(2*pi*i)*exp(z) = exp(z)
we see that infinitely many values of z, which differ by integer
multiples of 2*pi* i, have the same value of exp(z). So, what
do we mean by log(z)? The equation

exp(w) = z
has infinitely many solutions. MATLAB, and many (but not all)
other systems, chose the one that has an imaginary part in the range
-pi < imag(log(z)) <= pi
This defines another region in the complex plane; let’s call it S (for
“strip”). Then exp (z) maps S onto the entire plane and, conversely,
log(z) has been chosen to map the entire plane onto S.
Furthermore,
exp(log(z)) always equals z
but
log(exp(z)) equals zonlyif zisin S.
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The last 1-by-1 case involves the function z*p, which, by rec-
iprocating p, can serve as its own inverse. The definition of z*p
relies on the definitions of exp and log,

z*p = exp(p*log(z))

The corresponding region in the complex plane is a pie-
shaped slice containing the positive real axis, namely the set of
z, whose polar angle satisfies

-p*pi < angle(z) <= p*pi
Let’s call this C(p), generalizing our definition of C(1/2). The
figure shows C(1/3). Forp >= 1,C(p) is the whole plane,
but as p gets smaller, so does C(p). C(2/3) is two-thirds of the
plane, C(1/4) is one-fourth, etc. For p < 1, the function z*p
maps the whole plane onto C(p) and the inverse function
z~(1/p) maps C(p) onto the whole plane.

This implies that forp <= 1,

(z"p)~(1/p) always equals z
butforp > 1,
(z*p)~(1/p) equals zonlyif zisin C(1/p).

Now to matrices larger than 1-by-1, at least most of them. A
matrix A is “similar to a diagonal matrix” if, ignoring roundoff
error, the statement

[V,D] = eig(A)

would produce an eigenvector matrix, V, which is nonsingular,

and an eigenvalue matrix, D, which is diagonal. Such matrices
can be reconstructed from their eigenvalues and eigenvectors by
A = V*D/V
Moreover, matrix functions F (A) can be defined by
F(A) = V*F(D)/V
with F (D) defined by applying F (z) element-wise to the
eigenvalues on its diagonal.
If A is similar to a diagonal matrix, then, still ignoring roundoff,

sqrtm(A) = V*diag(sqrt(diag(D)))/V,
logm(A) = V*diag(log(diag(D)))/V, etc.

Consequently

sqrtm(A~2) == Aonlyifall eig(A) areinC(1/2),
logm(expm(A)) == Aonlyifall eig(A) arein S,
(A*p)~(1/p) == Aonlyifalleig(A) areinC(1/p).

The three examples at the beginning of the article were
interesting because: one of the eigenvaluesof [1,2; 3,4] is
negative, and so is not in C(1/2); both of the eigenvalues of
[0 4; -4 0] have imaginary parts greater than pi, and so are
not in S; some of the eigenvalues of pascal(n,2) are in the
left half plane and so are notin C(1/3).

Not all matrices are similar to diagonal matrices, and the
situation gets even more complicated. The prototype of such
matrices is the 2-by-2 “Jordan block”

J=
0 1
0 0

When complex numbers are allowed, all 1-by-1 matrices have
square roots and all of them except 0 have finite logarithms. But
this matrix does not have a square root or a logarithm. The
equations

X2 =J
and

expm(X) = J
do not have any solutions, real or complex. If you ask MATLAB
to compute

sgrim(J)
or

logm(J)
you will get serious warning messages. This is not a bug or an
algorithm failure—it is just impossible to compute something
that doesn’t exist.

If a matrix is not similar to a diagonal matrix, it still might have
a square root or logarithm. For example,E = [1 1; 0 1]

E =
11
0o 1

is not similar to a diagonal matrix, but has J as one possible.
logarithm.

So far, we've been ignoring roundoff error. Nothing we’ve
said involves approximations, scaling, finite precision arithmetic
or condition numbers. It’s all been “pure” mathematics,
expressed in MATLAB notation. But, we’ve run out of room
here. The numerical analysis—the really good stuff—will have
to wait for another time.
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