14

Symbolic Math, 30 Years After FLOP

Interface to Maple, programmed in MATLAR

seen the lead article in this newsletter announcing MATLAB’s

new Symbolic Math Toolboxes. These toolboxes make most of
the capabilities of Maple, a system for symbolic mathematical
computation, available within MATLAB. I'd like to tell you about
some of the design and implementation considerations that underlie
these new toolboxes. Two of us at The MathWorks, Denise Chen
and myself, have been working on this project for several months.

Unless you skipped immediately to this column, you've already

I've been interested in symbolic mathematical computation for
a long time. As a summer job in 1962, I worked for Charles
Lawson at Caltech’s Jet Propulsion Laboratory. Lawson wanted
to use computers to manipulate what astronomers call “theories”
—huge, multivariate Fourier series that describe the motion of the
planets and, especially, the earth’s moon. The computer language
LISP had just been developed by John McCarthy ac MIT.

Lawson’s idea was to use LISP-like data structures in Fortran
to represent such series. We wrote subroutines to carry out basic
operations on symbolic mathematical expressions. We could add,
subtract, multiply, and divide them. We could differentiate and,
to some extent, integrate them. We could print them out in a
pretty, two-dimensional format. We even modified the Fortran 11
compiler for the IBM 7090 to make Fortran recursive,

But then we ran into a really hard problem—simplification. We
had no effective way to decide if two of these expressions repre-
sented the same function. In order to conclude that the two
expressions

Hi-t)
and
t-F

represent the same function, you have to convert one to the other.

In fact, you want to convert both of them to the “simplest”
form. But which is simplest? That’s in the eye of the beholder.
The notion of a “simple” symbolic expression is not clearly
defined; it depends upon how the expression is going to be used.
And it becomes particularly difficult for expressions involving
several variables and dozens or hundreds of terms.

The simplification difficulties hit Lawson and me about
halfway through the summer. We didn’t get much further.
Luckily, we had already named the system: Fortran List
Oriented Package, or FLOP. As far as [know, this is the first
time it has ever been mentioned in print.

Since that experience, I've watched the development of
symbolic computation systems over the years — FORMAC,
ALPAC, MACSYMA, REDUCE, VAXIMA, MuMath, Derive,
AXIOM, SMP, Mathematica, and Maple. In my opinion, Maple is
clearly the best available today. It has the strongest mathematical
foundation, the best software and language design, and the backing
of a professional software organization. (Derive is an impressive
alternative for small machines, including hand-held computers.)
Maple was developed at the University of Waterloo by Gaston

Gonnet, Keith Geddes, and a number of collaborators and stu-
dents, and is now marketed by Waterloo Maple Software Inc,
(WMS), of Waterloo, Ontario.

WMS recently developed a version of Maple known as the
OEM Kernel. It is similar to MATLAB’s engine; it can be called by
any C program. And MATLAB, of course, can call any C program
through its “MEX" facility. So, we’ve made a MEXfile out of
Maple. It’s actually not a very large MEX-file, because the kernel
involves only Maple’s parser and interpreter. Most of Maple’s
mathematical knowledge is embedded in its library, a large, 9-
megabyte file containing preparsed M-files. In fact, the MATLAB
Symbolic Math Toolboxes access the same library as the stand-
alone Maple V, Release 2.

The MEX gateway is really quite simple. It passes strings con-
taining Maple commands to the kernel, receives strings containing
results from the kernel, checks error codes, and returns the strings
to MATLAB itself. We find the MEX connection preferable to
running Maple as a separate process and communicating via files,
pipes, or shared memory, because it is more efficient and has
better error recovery properties.

"The Symbolic Math Toolbox consists of the MEX-ified Maple
kernel, the Maple library, and over 50 M-files which provide
MATLAB versions of Maple functions for calculus, linear algebra,
variable-precision arithmetic, and symbolic equation solving.
We’ve tried to use notation which is a natural extension of
MATLAB’s notation for numeric expressions.

Any Maple functions which are not used directly by M-files in
the toolbox can be accessed by the maple function, which sends
any string representing a Maple command to the kernel.

For example, the statement

f = 'cos(x"3)/(1+x~2)"’

creates a MATLAB string representing a simple function, The
quantity ‘X' is a symbolic free variable. There does not have to
be a numeric value for X in the MATLAB workspace, because we
are not yet actually evaluating C0s (X).

The statement

ezplot(f)

doesn’t actually involve Maple. It calls a new MATLAB function to
plot a graph of the function defined by the string f. The range of
the x axis and the scale of the y axis are determined automatically
to show an “interesting” picture of the function, shown at the top
of the next page.

The MATLAB statement -
diff(f)

asks for the derivative of T with respect to its symbolic variable.
This calls the MATLAB M-file which defines dif¥f. The M-file
determines that the symbolic variable is 'x', then sends the
Maple command

diff(f,x)

FROM THE MATHWORKS

NEWSLETTER —

SUMMER 1993

cos(x"3)/(1+x"2)

T T r

0.8 4
0.6 4
0.4 4
0.2 4

(i ‘a‘{MMWN\AW VWWW\ MM) fet

-0.2+ 4

o

0.4 I ! | | .

through the MEX gateway to the Maple kernel. The resul,
-3*sin(x"3)*x 2/ (1+X*2) -2*cos (x*3) / (1+x*2) “2*x

is returned from the kernel to diff, then back to the MATLAB
workspace where it is stored as a string in ans. The string is a
valid MATLAB expression which can be manipulated and evalu-
ated by subsequent statements. In particular, the statement

pretty(ans)
produces the output
3 2 3
sin(x) x CcosS(x) x
N e e TR (e
2 22
1+ x (1 +x)

which is easier to read, but not useful for further processing,

This example illustrates one simple, but useful, feature of the
toolbox. Several of the functions, including differentiation, inte-
gration, and equation solving, automatically determine a free
symbolic variable if one is not specified. So

int('a*x*2 + b*x + ¢')

integrates the expression with respect to 'x'. If you want to
integrate with respect to some other variable, you can specify it
with a second argument.

Our rule for determining the default variable is a little
unorthodox, but we’ve found it useful. We search the string for all
isolated lower-case letters. If there is more than one such letter,
we pick the one that is alphabetically closest to 'x'. So, the
default symbolic variable in 'cos(a*t + b)'is 't'.

Except for the MEX gateway, all of the functions in the
toolbox are M-files, written in the MATLAB language. Although
MATLAB was not originally intended for such tasks, we have
found the vector notation and the interpretive environment very
convenient for this development. For example, there is a func-
tion, symvar, which determines the default variable. It uses state-
ments like -

k = find(s>='a' & s<='z")

to generate the vector of indices of the lower-case letters in the
string, S. Then

k = k(find(~isletter(s(k-1))& ~isletter(s(k+1))));

selects the indices of isolated letters which are not part of words.
Finally

1}

t abs(s(k) - 'x")
v = s(k(find(t == min(t))))

selects the letter closest to 'x ' .

Many of the M-files in the toolbox involve this sort string
manipulation. Programming the same thing in C or Fortran (or
Maple) would not be nearly so convenient.

The Maple library includes functions for evaluating a number
of the special functions of classical applied mathematics. These
include hypergeometric functions, orthogonal polynomials, sine
and cosine integrals, Fresnel integrals, and the Riemann zeta
function. There are a number of special functions which Maple
can evaluate for complex arguments. Two of them are the error
function, erf(z), and the gamma function, gamma(z) . These
allowed us to produce the two plots shown below.

10
liﬁm
it

R

Il

The contour plot duplicates a portion of a graph from
Abramowitz and Stegun, Handbook of Mathematical Functions,
page 298. It shows the level curves of the polar representation of
the complex values of erf(z) for a portion of the complex
plane. The surface plot shows the poles of the gamma (z), which
occur at the negative integers.

We’ve come a long way since the days of FLOP. I hope you
find the Symbolic Math Toolboxes as interesting, as useful,-and
as much fun as we have.

s,

15

